Fever accentuates transmural dispersion of repolarization and facilitates development of early afterdepolarizations and torsade de pointes under long-QT Conditions.
نویسندگان
چکیده
BACKGROUND The arrhythmogenic effects of hyperthermia have been highlighted in the Brugada syndrome but remain largely unexplored in other arrhythmic syndromes. The present study examines the effect of hyperthermia on transmural dispersion of action potential duration (TD-APD), early afterdepolarization (EAD) activity, and torsade de pointes (TdP) under long-QT conditions. METHODS AND RESULTS Standard and floating glass microelectrodes were used to record action potentials from epicardial, M cell, and endocardial regions of the arterially perfused left ventricle wedge, from tissue slices isolated from these regions, and from isolated Purkinje fibers. A transmural ECG was simultaneously recorded across the wedge. Under baseline conditions and in the presence of I(Ks) block (chromanol 293B), hyperthermia (39 degrees C to 40 degrees C) abbreviated APD in tissue slices from all 3 regions. In the presence of I(Kr) block (E-4031), hyperthermia prolonged APD and induced or augmented EADs in M cell and Purkinje preparations at pacing cycle lengths > or = 800 ms but abbreviated APD in epicardium and endocardium, resulting in a marked accentuation of TD-APD. Ryanodine prevented the hyperthermia- induced EAD. In perfused wedge preparations, hyperthermia abbreviated APD throughout both in the absence or presence of I(Kr) or I(Ks) block and did not induce EADs or TdP. Combined I(Kr) and I(Ks) block increased TD-APD and induced EADs (4/12) and spontaneous TdP (3/12) at 36 degrees C to 37 degrees C; hyperthermia (39 degrees C to 40 degrees C) further accentuated TD-APD and facilitated the development of EAD activity (9/12) and TdP (6/12). CONCLUSIONS Our findings suggest that hyperthermia can be associated with an increased arrhythmic risk when the repolarization reserve of the myocardium is compromised.
منابع مشابه
Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3.
BACKGROUND Congenital and acquired long QT syndrome (LQTS) are caused by abnormalities of ionic currents underlying ventricular repolarization. For a better understanding of the mechanisms by which functional electrical instability at the level of the whole heart leads to torsade de pointes (TdP), a novel model of LQT3 was developed and the role of transmural dispersion of repolarization for th...
متن کاملEpicardial activation of left ventricular wall prolongs QT interval and transmural dispersion of repolarization: implications for biventricular pacing.
BACKGROUND Epicardial pacing of the left ventricle (LV) has been shown to prolong the QT interval and predispose to the development of torsade de pointes arrhythmias. The present study examines the cellular basis for QT prolongation and arrhythmogenesis after reversal of the direction of activation of the LV wall. METHODS AND RESULTS A transmural ECG and transmembrane action potentials were s...
متن کاملIonic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes.
Torsade de pointes (TdP) is a life-threatening arrhythmia that develops as a consequence of a reduction in the repolarization reserve of cardiac cells leading to amplification of electrical heterogeneities in the ventricular myocardium as well as to the development of early after depolarization-induced triggered activity. Electrical heterogeneities within the ventricles are due to differences i...
متن کاملDrug-induced long QT syndrome and Torsade de Pointes.
Several medications, including drugs prescribed for noncardiac indications, have been associated with a prolongation of the QT interval on the surface electrocardiogram. Under certain circumstances, this clinical manifestation may reflect an increased risk for patients presenting with a polymorphic ventricular tachycardia known as torsade de pointes. Drugs that prolong the QT interval belong to...
متن کاملCellular and ionic basis for T-wave alternans under long-QT conditions.
BACKGROUND T-wave alternans (TWA), an ECG phenomenon characterized by beat-to-beat alternation of the morphology, amplitude, and/or polarity of the T wave, is commonly observed in the acquired and congenital long-QT syndromes (LQTS). This study examines the cellular and ionic basis for TWA induced by rapid pacing under conditions mimicking the LQT3 form of the congenital LQTS in an arterially p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2008